ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804+A2

Owner of the Declaration Kingspan Insulation B.V

Programme holder Institut Bauen und Umwelt e.V. (IBU

Publisher Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-KSI-20210043-CBA2-EN

Issue date 11/03/2022
Valid to 10/03/2026

Kooltherm® K12

Kingspan Insulation B.V.

www.ibu-epd.com | https://epd-online.com

General Information

Kingspan Insulation B.V.

Programme holder

IBU – Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany

Declaration number

EPD-KSI-20210043-CBA2-EN

This declaration is based on the product category rules:

Insulating materials made of foam plastics, 06.2017 (PCR checked and approved by the SVR)

Issue date

11/03/2021

Valid to

10/03/2026

Dipl. Ing. Hans Peters (chairman of Institut Bauen und Umwelt e.V.)

Man liken

Dr. Alexander Röder

(Managing Director Institut Bauen und Umwelt e.V.))

Kooltherm® K12

Owner of the declaration

Kingspan Insulation B.V. Lingewei 8 4004 LL Tiel The Netherlands

Declared product / declared unit

Kooltherm® K12 Framing Board 1 m², 100 mm thickness, $R_D = 4,75 \text{ m}^2 \cdot \text{K/W}$

Scope

The insulation material Kooltherm®, is produced by Kingspan Insulation B.V. at the manufacturing facility in Tiel, the Netherlands. A composite foil based facing is autohesively bonded to the insulation core during manufacture.

In order to enable the user of the EPD to calculate the LCA results for different thicknesses, the EPD contains the respective calculation rules.

The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

The EPD was created according to the specifications of *EN 15804+A2*. In the following, the standard will be simplified as *EN 15804*.

Verification

The standard *EN 15804* serves as the core PCR Independent verification of the declaration and data according to *ISO 14025:2010*

internally

x externally

Stell

Dipl. Natw. ETH Sascha Iqbal (Independent verifier)

Product

Product description/Product definition

Kooltherm® K12 is a rigid thermoset cellular insulation material faced on both sides with a composite foil based facing. The product is available in variable thicknesses from 20 mm up to 200 mm. This EPD is based on a thickness of 100 mm and $R_{\text{D}}\text{-value}$ of 4,75 $\text{m}^2\text{-}\text{K/W}.$

For the placing on the market of the product in the European Union/European Free Trade Association (EU/EFTA) (with the exception of Switzerland) Regulation (EU) No. 305/2011 (*CPR*) applies. The product needs a declaration of performance taking into consideration *EN 13166*:2012+A2:2016 - Thermal insulation products for buildings - Factory made phenolic foam (PF) products - specification and the CE-marking. For the application and use the respective national provisions apply.

Application

Due to its high insulating value, Kooltherm® K12 is suitable for use as insulation for framing systems.

Technical Data

Constructional data

Name	Value	Unit
Compressive strength acc. to EN 13166	≥ 100	kPa
Thermal conductivity λd acc. to EN 13166 for d = 20 – 44 mm	0.021	W/(mK)
Thermal conductivity λd acc. to EN 13166 for d = 45 – 120 mm	0.021	W/(mK)
Thermal conductivity λd acc. to EN 13166 for d = 121 – 159 mm	0.021	W/(mK)

Technical parameters not included are modulus of elasticity as well as sound absorption (not relevant for this application) and creep (not placed under permanent load).

Performance data of the product in accordance with the declaration of performance with respect to its essential characteristics according to *EN* 13166:2012+A2:2016 - Thermal insulation products for buildings - Factory made phenolic foam (PF) products - Specification

Base materials/Ancillary materials

The main materials are phenolic (PF) resin (between 70-80%) with added catalyst and additives (between 15-20%). Phenolic rigid foam onto a facing material (between 5-10%) is formed by the chemical reaction of these materials and adding a blowing agent with no ozone depletion potential (ca. 5%). Due to the closed-cell structure (conform *EN 13166*), the blowing agent remains in the foam.

In the current *REACH* regulations, phenolic foam insulation products are considered "articles" and are exempt from the requirements of Article 57 and 59(1) of *REACH* Regulation (EC) No 1907/2006. These

products are not classified as "hazardous products" according to any current legislation, and can hence be declared as follows:

- This article contains substances listed in the candidate list (date: 19.01.2021) exceeding 0.1 percentage by mass: **no.**
- This article contains other carcinogenic, mutagenic, reprotoxic (CMR) substances in categories 1A or 1B which are not on the candidate list, exceeding 0.1 percentage by mass: **no.**
- Biocide products were added to this construction product or it has been treated with biocide products (this then concerns a treated product as defined by the (EU) Biocidal Products Regulation No. 528/2012 (BPR): no.

The chemical functional group of the additives used in the resin is that of non-ionic surfactants.

Reference service life

The reference service life is not to be declared in this EPD as it does not cover the use stage.

LCA: Calculation rules

Declared Unit

The declared unit (1 m²) and conversion factors are listed in the table below.

Declared unit

Name	Value	Unit
Declared unit	1	m ²
Gross density	35	kg/m³
conversion factor [Mass/Declared Unit] (in kg/m²)	3.5	-
Grammage	3.5	kg/m ²
Layer thickness	0.1	m

System boundary

Type of EPD: according to *EN 15804*: cradle to gate with options, modules C1–C4, and module D (A1–A3, C, D and additional modules: A4,A5).

According to PCR Part A:

1a) declaration of one specific product from one plant of one manufacturer.

The product stage is a mandatory information module and it covers:

- · A1, raw material extraction and processing, processing of secondary material input (e.g. recycling processes),
- A2, transport to the manufacturer,
- · A3, manufacturing, including provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of-waste state or disposal of final residues during the product stage.

The construction process stage includes:

- · A4 transport to the building site;
- A5 installation in the building

including provision of all materials, products and energy, as well as waste processing up to the end-of-

waste state or disposal of final residues during the construction process stage.

The end-of-life stage is a mandatory information module and it covers:

- · C1 de-construction, demolition;
- · C2 transport to waste processing;
- · C3 waste processing for reuse, recovery and/or recycling;
- · C4 disposal (not applicable for this EPD) including provision and all transport, provision of all materials, products and related energy and water use.

Environmental burden of the incineration (R1 > 60%) of the product

at the end-of-life stage are assigned to the product system (C3); resulting potential credits for thermal and electrical energy from energy substitution are declared in module D.

Renewable electricity sources for manufacturing

All electricity used during production comes from renewable sources.

By generating energy on-site with solar panels and with procured energy from fully certified renewable sources. Following the global Net Zero Energy strategy from Kingspan Group plc.

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account.

Factors for different thicknesses

The LCA results for the insulation material declared in this EPD refer to a product with a thickness of 100 mm. To enable the user of the EPD to calculate the results for different thicknesses the factors in the following table can be used for the calculation. For modules A1-

A3, C3 and D the LCA results in chapter 5 have to be

multiplied with these factors.

K12		Mo	dule A1 -	A3		Module C				Module D					
KIZ	100 mm	20 mm	80 mm	120 mm	200 mm	100 mm	20 mm	80 mm	120 mm	200 mm	100 mm	20 mm	80 mm	120 mm	200 mm
GWP - total	1	0,26	0,81	1,18	2,06	1	0,20	0,80	1,20	2,01	1	0,20	0,80	1,20	2,17
GWP - fossil	1	0,28	0,82	1,18	2,04	1	0,20	0,80	1,20	2,01	1	0,20	0,80	1,20	2,17
GWP - biogenic	1	0,87	0,97	1,03	1,14	1	0,20	0,80	1,20	2,00	1	0,20	0,80	1,20	2,17
GWP - luluc	1	0,16	0,79	1,21	2,05	1	0,20	0,80	1,20	1,99	1	0,20	0,80	1,20	2,18
ODP	1	0,14	0,79	1,21	2,07	1	0,20	0,80	1,20	2,00	1	0,20	0,80	1,20	2,17
AP	1	0,41	0,85	1,14	1,87	1	0,20	0,80	1,20	2,00	1	0,20	0,80	1,20	2,17
EP - freshwater	1	0,28	0,82	1,18	1,94	1	0,20	0,80	1,20	1,99	1	0,20	0,80	1,20	2,17
EP - marine	1	0,32	0,83	1,17	1,97	1	0,20	0,80	1,20	2,00	1	0,20	0,80	1,20	2,17
EP - terrestrial	1	0,33	0,83	1,17	1,96	1	0,20	0,80	1,20	2,00	1	0,20	0,80	1,20	2,17
POCP	1	0,29	0,82	1,18	2,18	1	0,20	0,80	1,20	2,00	1	0,20	0,80	1,20	2,17
ADPF	1	0,21	0,80	1,20	2,15	1	0,20	0,80	1,20	2,00	1	0,20	0,80	1,20	2,17
ADPE	1	0,17	0,79	1,21	2,06	1	0,20	0,80	1,20	2,00	1	0,20	0,80	1,20	2,18
WDP	1	0,25	0,82	1,19	2,10	1	0,20	0,80	1,20	2,01	1	0,20	0,80	1,20	2,17

Background data from GaBi software-system version 9 with Service Packs 39 *GaBi ts* is used.

LCA: Scenarios and additional technical information

Characteristic product properties Information on biogenic Carbon

The total mass of biogenic carbon containing materials is less than 5 % of the total mass of the product and accompanying packaging.

Waste incineration with energy recuperation is assumed as end-of-life scenario

Technical information

The following technical information is a basis for the declared modules or can be used for developing specific scenarios in the context of a building assessment.

Transport to the building site (A4)

Name	Value	Unit
Litres of fuel	0.0103	l/100km
Transport distance	100	km
Gross density of products transported	35	kg/m ³

Installation into the building (A5)

motamation mits the ballang (Fis)		
Name	Value	Unit
Output substances following waste	0.08	kg
treatment on site packaging material	0.00	l va

Within A1-A3 the following packaging of the final product is included:

Polyethylene cover and wrap: 0,06 kg/m²

Others (mainly Expanded Polystyrene skid): 0,02 kg/m²

The recycling of the packaging is considered in A5.

End of life (C1-C4)

The assumptions for C1 are: diesel driven excavator (100 kW; 0.2 litre fuel per ton excavated material). The assumptions for C2 are: Truck Euro 6, diesel driven, 26-28 t gross weight, assumed distance 50 km

Name	Value	Unit
Collected as mixed construction waste	3.5	kg
Energy recovery	3.5	kg
R1-value of waste incineration plant	>60	%

Reuse, recovery and/or recycling potentials (D), relevant scenario information

LCA: Results

Disclaimer:

EP-freshwater: This indicator has been calculated as "kg P eq" as required in the characterization model (EUTREND model, Struijs et al., 2009b, as implemented in ReCiPe;

http://eplca.jrc.ec.europa.eu/LCDN/developerEF.xhtml)

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; ND = MODULE OR INDICATOR NOT DECLARED; MNR = MODULE NOT RELEVANT)

ı	DEGL	ANE	J, IVIIN	V - IAI	ODUL		NELL	- A WIA I)								
	PROD	DUCT S	TAGE	_	TRUCTI OCESS AGE		USE STAGE						END OF LIFE STAGE				BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES
	Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
	A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
	Х	Χ	Х	Х	Х	ND	ND	MNR	MNR	MNR	ND	ND	Х	Χ	Х	Χ	X

Core Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
GWP-total	[kg CO ₂ -Eq.]	7.47E+0	2.98E-2	2.00E-1	2.25E-3	1.49E-2	7.73E+0	0.00E+0	-3.33E+0
GWP-fossil	[kg CO ₂ -Eq.]	7.62E+0	2.96E-2	2.00E-1	2.25E-3	1.48E-2	7.73E+0	0.00E+0	-3.32E+0
GWP-biogenic	[kg CO ₂ -Eq.]	-2.32E-1	-1.80E-4	-3.63E-6	-1.59E-7	-8.99E-5	3.47E-4	0.00E+0	-6.44E-3
GWP-luluc	[kg CO ₂ -Eq.]	7.73E-2	4.52E-4	7.20E-6	7.64E-8	2.26E-4	7.47E-5	0.00E+0	-2.26E-3
ODP	[kg CFC11-Eq.]	1.31E-8	3.59E-18	5.97E-17	2.16E-19	1.80E-18	9.26E-16	0.00E+0	-3.40E-14
AP	[mol H+-Eq.]	1.84E-2	3.49E-5	2.76E-5	1.07E-5	1.75E-5	4.61E-3	0.00E+0	-6.28E-3
EP-freshwater	[kg PO ₄ -Eq.]	2.63E-5	1.43E-7	1.05E-8	4.00E-10	7.13E-8	1.58E-7	0.00E+0	-4.37E-6
EP-marine	[kg N-Eq.]	4.54E-3	1.08E-5	7.28E-6	5.00E-6	5.38E-6	2.21E-3	0.00E+0	-1.44E-3
EP-terrestrial	[mol N-Eq.]	4.58E-2	1.26E-4	1.20E-4	5.47E-5	6.30E-5	2.55E-2	0.00E+0	-1.55E-2
POCP	[kg NMVOC-Eq.]	1.95E-2	2.81E-5	2.09E-5	1.42E-5	1.40E-5	5.69E-3	0.00E+0	-4.14E-3
ADPE	[kg Sb-Eq.]	6.36E-6	2.06E-9	8.60E-10	5.92E-11	1.03E-9	1.58E-8	0.00E+0	-5.19E-7
ADPF	[MJ]	2.01E+2	3.94E-1	7.91E-2	3.05E-2	1.97E-1	2.09E+0	0.00E+0	-5.75E+1
WDP	[m³ world-Eq deprived]	1.28E+0	6.38E-4	2.08E-2	3.93E-6	3.19E-4	7.58E-1	0.00E+0	-3.09E-1

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential, POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-Caption fossil resources; ADPF = Abiotic depletion potential for fossil resources; WDP = Water (user) deprivation potential

RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 1 m2

Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
PERE	[MJ]	3.57E+1	2.29E-2	1.53E-2	8.97E-5	1.14E-2	2.78E-1	0.00E+0	-1.17E+1
PERM	[MJ]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
PERT	[MJ]	3.57E+1	2.29E-2	1.53E-2	8.97E-5	1.14E-2	2.78E-1	0.00E+0	-1.17E+1
PENRE	[MJ]	1.06E+2	3.94E-1	7.92E-2	3.05E-2	1.97E-1	9.79E+1	0.00E+0	-5.75E+1
PENRM	[MJ]	9.58E+1	0.00E+0	0.00E+0	0.00E+0	0.00E+0	-9.58E+1	0.00E+0	0.00E+0
PENRT	[MJ]	2.01E+2	3.94E-1	7.92E-2	3.05E-2	1.97E-1	2.09E+0	0.00E+0	-5.75E+1
SM	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
RSF	[MJ]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
NRSF	[MJ]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
FW	[m³]	5.71E-2	3.87E-5	4.94E-4	1.66E-7	1.93E-5	1.79E-2	0.00E+0	-1.37E+2

Caption

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of nonrenewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

RESULTS OF THE LCA – WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2: 1 m2 100 mm thickness

Indicator	Unit	A1-A3	A4	A5	C1	C2	СЗ	C4	D
HWD	[kg]	8.87E-5	2.20E-8	3.71E-10	3.24E-12	1.10E-8	1.33E-9	0.00E+0	-2.37E-8
NHWD	[kg]	3.18E-1	3.21E-5	1.93E-2	1.82E-7	1.60E-5	3.88E-2	0.00E+0	-2.49E-2
RWD	[kg]	2.76E-3	5.35E-7	3.64E-6	3.51E-8	2.68E-7	9.39E-5	0.00E+0	-4.65E-3
CRU	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
MFR	[kg]	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
MER	[kg]	0.00E+0	0.00E+0	7.99E-2	0.00E+0	0.00E+0	3.50E+0	0.00E+0	0.00E+0
EEE	[MJ]	0.00E+0	0.00E+0	4.43E-1	0.00E+0	0.00E+0	1.34E+1	0.00E+0	0.00E+0
EET	[MJ]	0.00E+0	0.00E+0	7.98E-1	0.00E+0	0.00E+0	2.39E+1	0.00E+0	0.00E+0

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components Caption for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EEE = Exported thermal energy

RESULTS OF THE LCA – additional impact categories according to EN 15804+A2-optional:

Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
PM	[Disease Incidence]	1.80E-7	2.01E-10	3.77E-10	1.20E-10	1.00E-10	1.32E-8	0.00E+0	-5.32E-8
IR	[kBq U235- Eq.]	4.58E-1	7.84E-5	4.82E-4	5.13E-6	3.92E-5	1.46E-2	0.00E+0	-7.63E-1
ETP-fw	[CTUe]	7.15E+1	2.65E-1	5.60E-2	2.06E-2	1.33E-1	7.07E-1	0.00E+0	-1.28E+1
HTP-c	[CTUh]	7.66E-9	5.32E-12	4.28E-12	3.50E-13	2.66E-12	1.20E-10	0.00E+0	-2.34E-9
HTP-nc	[CTUh]	9.96E-8	2.14E-10	3.14E-10	1.22E-11	1.07E-10	1.39E-9	0.00E+0	-1.18E-8
SQP	[-]	3.56E+1	1.78E-1	1.99E-2	7.99E-5	8.89E-2	4.09E-1	0.00E+0	-8.66E+0

PM = Potential incidence of disease due to PM emissions; IR = Potential Human exposure efficiency relative to U235; ETP-fw = Potential Caption comparative Toxic Unit for ecosystems; HTP-c = Potential comparative Toxic Unit for humans (cancerogenic); HTP-nc = Potential comparative Toxic Unit for humans (not cancerogenic); SQP = Potential soil quality index

Disclaimer 1 - for the indicator IR

This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Disclaimer 2 - for the indicators ADPE, ADPF, WDP, ETP-fw, HTP-c, HTP-nc, SQP

The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

References

EN 13166

EN 13166:2012+A2:2016: Thermal insulation products for buildings. Factory made phenolic foam (PF) products. Specification

EN 15804+A2

EN15804/A2: Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products, 2019

BPR

Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products

CPR

Regulation (EU) No. 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonised condition for the marketing of construction products and repealing Council Directive 89/106/EC

GaBi ts

thinkstep AG: Leinfelden-Echterdingen GaBi Software-System and Database for Life Cycle Engineering 1992-2019

IBU 2016

IBU (2016): General Programme Instructions for the Preparation of EPDs at the Institut Bauen und Umwelt e.V., Version 1.1 Institut Bauen und Umwelt e.V., Berlin, www.ibu-epd.de

ISO 14025

EN ISO 14025:2011-10 - Environmental labels and declarations — Type III environmental declarations — Principles and procedures

LCA-tool

Kingspan LCA tool, version 1.0. IBU-KSI-202001-LT1-EN.

Developed by Sphera Solutions GmbH (formely Thinkstep GmbH)

PCR Version 1.7, Part A

Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for Building-Related Products and services, Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project Report , March 2018

PCR 2017, Part B

Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part B: Requirements on the EPD for insulating materials made of foam plastics.June 2017

REACH

Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)

https://echa.europa.eu/candidate-list-table; accessed 19th of January 2021, 211 substances listed.

Renewable Energy Certificate

Towarowa Gielda Energii S.A.: Guarantees of origin Document ID: RGP_ACTBV_2019-12-31_0720

Institut Bauen und Umwelt eV.	Publisher Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 3087748- 0 +49 (0)30 3087748- 29 info@ibu-epd.com www.ibu-epd.com
Institut Bauen und Umwelt eV.	Programme holder Institut Bauen und Umwelt e.V. Panoramastr 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 - 3087748- 0 +49 (0)30 - 3087748 - 29 info@ibu-epd.com www.ibu-epd.com
Kingspan.	Author of the Life Cycle Assessment Kingspan Insulation B.V. Lingewei 8 4004LL Tiel Netherlands	Tel Fax Mail Web	+31 (0) 543 543 210 +31 (0) 344 675 251 info@kingspaninsulation.nl www.kingspan.com
Kingspan	Owner of the Declaration Kingspan Insulation B.V. Lingewei 8 4004LL Tiel Netherlands	Tel Fax Mail Web	+31 (0) 543 543 210 +31 (0) 344 675 251 info@kingspaninsulation.nl www.kingspan.com